Year End Review: Kinematics

1) A plane is flying at $870 \mathrm{~km} / \mathrm{h}$ north while fighting against wind blowing at $120 \mathrm{~km} / \mathrm{h}$ at 30.0° North of East.
a. What is the wind's horizontal velocity component in m / s ?
b. What is the resultant velocity of the plane in m / s ?
2) A 1.5 kg bowling ball was rolling at $4.7 \mathrm{~m} / \mathrm{s}$ before approaching a 15.0 m high cliff. Air resistance is negligible.
a. What was the bowling ball's vertical velocity component before leaving the cliff?
b. How much time did the ball spend in the air before hitting the ground?
c. How far from the base of the cliff will the ball hit?
3) Challenge! A ball of mass 0.25 kg is projected vertically upwards from the ground with an initial velocity of 30 m / s. The acceleration of free fall is $10 \mathrm{~m} / \mathrm{s}^{2}$, but air resistance cannot be neglected.

The graph below shows the variation with time t of the velocity v of this ball for the upward part of the motion.
a. State what the area under the graph represents.
b. Estimate the maximum height reached by the ball.
c. Determine, for the ball at $t=1.0 \mathrm{~s}$,
i. the acceleration;
ii. the magnitude of the force of air resistance.
d. Use the graph to explain, without any further calculations, that the force of air resistance is decreasing in magnitude as the ball moves upward.

Answer Key
1)
a. $\quad 29 \mathrm{~m} / \mathrm{s}$ East
b. $260 \mathrm{~m} / \mathrm{s}$ at 6.4° East of North
2)
a. $\quad 0 \mathrm{~m} / \mathrm{s}$
b. 1.7 s
c. 8.2 m
3)
a. the maximum height reached by the ball / the displacement in the first $2 \mathrm{~s} /$ the distance travelled;
b. 30 m ; Accept answers in the range. 25 mto 30 m
c.
i. drawing tangent at $t=1.0 \mathrm{~s}$; using a sufficiently large triangle - at least 6 cm hypotenuse; to get $a=15 \mathrm{~ms}^{-2}$
ii. $R+m g=m a ; R=3.75-2.50=1.2 \mathrm{~N}$;
d. slope of the graph is decreasing; the force of air resistance must decrease as well;

