Worksheet 6.9 Transformers Do on separate sheet of paper.

1) Currents of 0.25 A and 0.95 A flow through the primary and secondary coils of a transformer respectively if there are 1.0×10^{3} turns in the primary coil how many turns are in the secondary coil?
2) A step-down transformer has coils of 1.20×10^{3} and 1.5×10^{2} turns. If the transformer is connected to a $1.20 \times 10^{2} \mathrm{~V}$ power line, and the current in the secondary coil is 5.00 A . what is the current in the primary coil?
3) Near your home the voltage pf the power line is $3.6 \times 10^{3} \mathrm{~V}$. The transformer between your home and the line reduces this voltage to $1.20 \times 10^{2} \mathrm{~V}$. If the transformer is to deliver $2.4 \times 10^{3} \mathrm{~J}$ of energy each second to your house, what is the current in:
a) the primary coil
b) the secondary coil
($2.0 \times 10^{1} \mathrm{~A}$)
4) A step-down transformer $\left(N_{p}=1.50 \times 10^{2}, N_{S}=25\right)$ is connected to a $1.20 \times 10^{2} \mathrm{~V}$ primary line. If there is a 75Ω electrical device placed in the secondary circuit, what is the current in the primary coil?
$\left(4.4 \times 10^{-2} \mathrm{~A}\right)$
5) If the voltage and current of the primary coil is $1.20 \times 10^{2} \mathrm{~V}$ and 3.0 A , what is the power delivered to the secondary coil?
6) If the power delivered to the secondary coil of a step-up transformer is $5.0 \times 10^{1} \mathrm{~W}$ from a $1.20 \times 10^{2} \mathrm{~V}$ power line, what is the current in the primary coil?
7) A transformer $\left(N_{p}=5.5 \times 10^{2}, N_{s}=36\right)$ is connected to a $1.20 \times 10^{2} \mathrm{~V}$ power line. If the current in the primary coil is 1.0 A , what is the power in the secondary coil?
8) A 100 W transformer ($\mathrm{Ns}=1500$) has an input voltage of 9.0 V and an output current of 0.65 A . How many turns are on the primary coil?
