Worksheet 6.5 Magnetic Force

1. A proton traveling vertically at a speed of $2.10 \times 10^{5} \mathrm{~m} / \mathrm{s}$ through a horizontal magnetic field experiences a magnetic force of $9.50 \times 10^{-14} \mathrm{~N}$ what is the magnitude of the magnetic field?
2. A copper wire $(I=0.222 \mathrm{~m})$ carries conventional current of 0.960 A a north through a magnetic field $\left(B=7.50 \times 10^{-4} \mathrm{~T}\right)$ that has directed vertically upward what is the magnitude and direction of the magnetic force acting on the wire?
($1.60 \times 10^{-4} \mathrm{~N}$ East)
3.Calculate the magnitude and the direction of the magnetic force on an electron traveling north at a speed of 3.52×10^{5} m / s through a vertically upward magnetic field of $2.80 \times 10^{-1} \mathrm{~T}$.
(1.58×10 ${ }^{-14} \mathrm{~N}$ West)
3. Calculate the magnitude and the direction of the magnetic force on an alpha particle traveling south at a speed of $7.40 \times 10^{4} \mathrm{~m} / \mathrm{s}$ through vertically upward magnetic field of 5.50T.
(1.30×10-13 N West)
4. Calculate the magnitude and the direction of the magnetic field that produces a magnetic force of $1.70 \times 10^{-14} \mathrm{~N}$ East on a proton that is traveling $1.90 \times 10^{4} \mathrm{~m} / \mathrm{s}$ North through the magnetic field.
(5.59 T up)
5. An electron experiences an upward force of $7.1 \times 10^{-14} \mathrm{~N}$ when it is traveling $2.7 \times 10^{5} \mathrm{~m} / \mathrm{s}$ south through a magnetic field what is the magnitude and direction of the magnetic field?
(1.6 T West)
6. Calculate the magnitude and the direction of the magnetic force on an alpha particle traveling upward at a speed of $2.11 \times 10^{5} \mathrm{~m} / \mathrm{s}$ through a magnetic field that is directed down.
(0)
7. A wire in the armature of an electric motor is $2.50 \times 10^{-1} \mathrm{~m}$ long and is perpendicular to a magnetic field of $5.00 \times 10^{-1} \mathrm{~T}$ Calculate the magnetic force on the wire when it carries a current of 3.60 A .
$\left(4.50 \times 10^{-1}\right)$
8. An electron is accelerated from rest by a potential difference of $1.70 \times 10^{3} \mathrm{~V}$ and then enters a magnetic field of $2.50 \times 10^{-1} \mathrm{~T}$ moving perpendicular to it what is the magnitude of the magnetic force acting on the electron?
$\left(9.77 \times 10^{-13} \mathrm{~N}\right)$
9. An electron is accelerated by a potential difference and then travels perpendicular through a magnetic field of $7.20 \times 10^{-1} \mathrm{~T}$ where it experiences a magnetic force of $4.1 \times 10^{-13} \mathrm{~N}$. Assuming this electron starts from rest through what potential differences is the electron accelerated? $\left(3.6 \times 10^{1} \mathrm{~V}\right)$
10. Calculate the downward acceleration of an electron that is traveling horizontally at a speed of $6.20 \times 10^{5} \mathrm{~m} / \mathrm{s}$ perpendicular to a horizontal magnetic field of $2.30 \times 10^{-1} \mathrm{~T}$.
$\left(2.50 \times 10^{16} \mathrm{~m} / \mathrm{s}^{2}\right)$
11. An alpha particle travel through a magnetic field of $4.22 \times 10^{-1} \mathrm{~T}$ perpendicular to the field. If the radius of the arc of the deflected particles is $1.50 \times 10^{-3} \mathrm{~m}$ what is the speed of the particles?
$\left(3.05 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)$
12. A proton travels through a magnetic field at a speed of $5.40 \times 10^{5} \mathrm{~m} / \mathrm{s}$ perpendicular to the field. If the radius of the arc of the deflected proton is $7.20 \times 10^{-3} \mathrm{~m}$ what is the magnetic field strength?
$\left(7.83 \times 10^{-1} \mathrm{~T}\right)$
13. Calculate the charge to mass ratio of a particle that is traveling $3.60 \times 10^{5} \mathrm{~m} / \mathrm{s}$ and is deflected in an arc with a radius of $7.40 \times 10^{-2} \mathrm{~m}$ as it travels through a perpendicular magnetic field of $6.10 \times 10^{-1} \mathrm{~T}$.
($7.98 \times 10^{6} \mathrm{C} / \mathrm{kg}$)
14. Alpha particles travel undeflected through magnetic and electric fields that are perpendicular to each other. The speed of the alpha particles is $7.80 \times 105 \mathrm{~m} / \mathrm{s}$ and the strength of the magnetic field is $2.20 \times 10^{-1} \mathrm{~T}$ Assuming that the alpha particles are traveling perpendicular to these fields what is the strength of the electric field? $\quad\left(1.72 \times 10^{5} \mathrm{~N} / \mathrm{C}\right)$
15. Positive charged particles travel undeflected through magnetic and electric fields that are perpendicular to each other. The magnetic field strength is $6.50 \times 10^{-1} \mathrm{~T}$ and the strength of the electric field is $2.10 \times 10^{5} \mathrm{~N} / \mathrm{C}$ assuming the charged particles are traveling perpendicular to these fields what is the speed of the charged particles?

$$
\left(3.23 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)
$$

17. Alpha particles travel through a magnetic field of $3.60 \times 10^{-1} \mathrm{~T}$ and are deflected in an arc with a radius of $8.20 \times 10^{-2} \mathrm{~m}$. Assuming the alpha particles are traveling perpendicular to the field what is the energy of each alpha particle.

$$
\left(6.71 \times 10^{-15} \mathrm{~J}\right)
$$

18. In a CRT electrons are accelerated from rest by a potential difference of $2.50 \times 10^{3} \mathrm{~V}$. What is the maximum speed of the electrons?
$\left(2.96 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)$
19. In a CRT electron reaches a maximum speed of $4.75 \times 10^{7} \mathrm{~m} / \mathrm{s}$ if this electron is accelerated from rest what is the potential difference across the tube?
$\left(6.42 \times 10^{3} \mathrm{~V}\right)$
20. In a CRT electrons are accelerated from rest by a potential difference of $1.40 \times 10^{3} \mathrm{~V}$ These electrons enter a magnetic field with a strength of $2.20 \times 10^{-2} \mathrm{~T}$ Assuming the electrons are traveling perpendicular to the field what id the radius of the arc of the deflected electrons?
$\left(5.74 \times 10^{-3} \mathrm{~m}\right)$
21. Electrons are accelerated form rest in a CRT. These electrons now pass through a magnetic field of $1.40 \times 10^{-2} \mathrm{~T}$ and through an electric field of $4.20 \times 10^{5} \mathrm{~N} / \mathrm{C}$. The fields are perpendicular to each other the electron are no deflected assuming the electrons are traveling perpendicular to these fields what is the potential difference across the CRT?

$$
\left(2.56 \times 10^{3} \mathrm{~V}\right)
$$

22. A negatively charged particle with a mass of $8.4 \times 10^{-27} \mathrm{~kg}$ is traveling at a velocity of $5.6 \times 10^{5} \mathrm{~m} / \mathrm{s}$ perpendicularly through a magnetic field of $2.8 \times 10^{-1} \mathrm{~T}$ If the radius of the path of the particle is 3.5 cm how many excess electrons does this particle carry?
23. Alpha particles travel at a speed of $3.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$ through a magnetic field. If the magnetic field strength is $4.2 \times 10^{-2} \mathrm{~T}$ what is the radius of the path followed by the alpha particles when the magnetic field is parallel to the direction the alpha particles travel?
(no deflection)
24. A proton moves through a 0.75 T magnetic field in a circle with a radius of 0.30 m what is the momentum of this proton?

$$
\left(3.6 \times 10^{-20} \mathrm{~kg} * \mathrm{~m} / \mathrm{s}\right)
$$

25. Electrons are accelerated from rest through a potential difference these electrons are than deflected along an arc of radius 0.77 m when they travel through a $2.2 \times 10^{-4} \mathrm{~T}$ magnetic field. What is the accelerated voltage? $\left(2.5 \times 10^{3} \mathrm{~V}\right)$
26. An ion with a charge to mass ratio of $1.10 \times 10^{4} \mathrm{C} / \mathrm{kg}$ travels perpendicular to magnetic field $\left(B=9.10 \times 10^{-1} \mathrm{~T}\right)$ in a circular path ($r=0.240 \mathrm{~m}$) How long does it take the ion to complete one revolution?
$\left(6.28 \times 10^{-4} \mathrm{~s}\right)$
