Worksheet 6.02 Electric Field

1) What is the electric field strength 0.750 m from an 8.00 uC charged object?
($1.28 \times 10^{5} \mathrm{~N} / \mathrm{C}$)
2) Calculate the gravitational field strength on the surface of Mars. Mars has a radius of $3.43 \times 10^{6} \mathrm{~m}$ and a mass of $6.37 \times 10^{23} \mathrm{~kg}$.
3) At a point a short distance from a $4.60 \times 10^{-6} \mathrm{C}$ charged object, there is an electric field strength of 2.75×10^{5} N / C. What is the distance to the charged object producing this field?
4) If an alpha particle experiences an electric force of 0.250 N at a point in space, what electric force would a proton experience at the same point?
5) What is the electric field strength at a point in space where a $5.20 \times 10^{-6} \mathrm{C}$ charged object experiences an electric force of $7.11 \times 10^{-3} \mathrm{~N}$?
6) What is the initial acceleration of an alpha particle when it is placed at a point in space where the electric field strength is $7.60 \times 10^{4} \mathrm{~N} / \mathrm{C}$?
7) Calculate the electric field strength midway between a 4.50 uC charged object and a -4.50 uC charged object if the two charges are 50 cm apart.
($1.30 \times 10^{6} \mathrm{~N} / \mathrm{C}$)
8) Calculate the electric field strength midway between a 3.0 uC charged object and a 6.0 uC object if they are 0.80 m apart.
9) Calculate the electric field strength midway between two 3.0 uC objects if they are 90 cm apart.
($0 \mathrm{~N} / \mathrm{C}$)
10) What is the electric field strength at a point in space where an electron experiences an initial acceleration of $7.50 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$?
(42.7 N/C)
11) The electric field strength at a distance of $3.00 \times 10^{-1} \mathrm{~m}$ from a charged object is $3.60 \times 10^{5} \mathrm{~N} / \mathrm{C}$. What is the electric field strength at a distance of 45 cm from the same object?
($1.60 \times 10^{5} \mathrm{~N} / \mathrm{C}$)
12) An electric field of $260000 \mathrm{~N} / \mathrm{C}$ points due west at a certain spot. What are the magnitude and direction of the force that acts on a charge of $-7.0 \mu \mathrm{C}$ at this spot?
(1.8 N due east)
13) Two charges, $-16 \mu \mathrm{C}$ and $+4.0 \mu \mathrm{C}$, are fixed in place and separated by 3.0 m . a) At what spot along a line through the charges is net electric field zero? Locate this spot relative to the positive charge. (Hint: the spot does not necessarily lie between the two charges.) b) What would by the force on a charge of $+14 \mu \mathrm{C}$ placed at this spot?
(3.0 m from the positive charge (not between the charges), ON)
14) Two point charges are lying on the y axis where $q_{1}=-4.00 \mu C$ and $q_{2}=+$ $4.00 \mu \mathrm{C}$. They are equidistant from the point P , which lies on the x axis. a) What is the net electric field at P? b) A small object of charge $q_{o}=+8.00 \mu \mathrm{C}$ and mass $\mathrm{m}=1.20 \mathrm{~g}$ is placed at P . When it is released, what is its acceleration? ($7.56 \times 10^{4} \mathrm{~N} / \mathrm{C}$, directed along the $+y$ axis, $5.04 \times 10^{2} \mathrm{~m} / \mathrm{s}^{2}$, along the +y axis)

*15) At three corners of a rectangle (length $=2 d$, height $=d$), the following charges are located: $+q_{1}$ (upper left corner), $+q_{2}$ (lower right corner), and -q (lower left corner). The net electric field at the (empty) upper right corner is zero. Find the magnitudes of q_{1} and q_{2}. Express your answers in terms of q .

$$
\left(\left|q_{1}\right|=0.716 q,\left|q_{2}\right|=0.0895 q\right)
$$

