Worksheet 6.01 Electrostatic Force

1) Calculate the electric force between two point charges of $4.00 \mu \mathrm{C}$ and $3.00 \mu \mathrm{C}$ when they are 2.00 cm apart.
(270 N)
2) Two points of equal charge produce an electric force on each other of $3.40 \times 10^{-2} \mathrm{~N}$ when placed 0.100 m apart. What is the charge on each point? (1.94×10-7 C)
3) How far apart are two point charges of $2.0 \times 10-6 \mathrm{C}$ and $4.0 \times 10-6 \mathrm{C}$ if they produce an electric force of 0.56 N ? (0.36 m)
4) Two point charged objects produce an electric force on each other of $6.20 \times 10^{-2} \mathrm{~N}$. What will the force between them be if the distance between increases three-fold? $\left(6.89 \times 10^{-3} \mathrm{~N}\right)$
5) Two point charges produce a force between on each other of $4.5 \times 10^{-3} \mathrm{~N}$. What is the force between them if the charge on each triples and the distance between them doubles? $\left(1.0 \times 10^{-2} \mathrm{~N}\right)$
6)

Three charged objects are placed in a line as shown. Calculate the force on the middle object due to the other charges. (1.1×10-1 N left)
7) The electric force between two charged particles is $5.2 \times 10^{-4} \mathrm{~N}$ when the objects are 0.311 m apart. What is the force between these objects if the distance changed to 0.404 m ? $\left(3.1 \times 10^{-4} \mathrm{~N}\right)$
8) Three point charges are placed at the corner of a right angle triangle as shown. Calculate the magnitude of the net electric force on the object marked X due to the other two charges.

9) Two small spheres, each with a mass of $2.00 \times 10^{-5} \mathrm{~kg}$ are placed $3.50 \times 10^{-1} \mathrm{~m}$ apart. One sphere has a charge of -2.00 uC and is fixed in position. The other sphere has a charge of -3.00 uC but is free to move without friction. What is the initial acceleration of the free object? $\quad\left(2.20 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}\right)$

Use the following diagram to answer questions 10-12

10) What is the net force on A ? (0.94 N left)
11) What is the net force on B ? (2.88 N right)
12) What is the net force on C ? $(1.944 \mathrm{~N}$ left)
13) Charge A was taken away from the setup above. Where could we put charge A, so that charge A will not move? (3.2 m left from C)

