Worksheet 5.5 Escape Velocity

Before starting this worksheet, google the mass and radius of the Earth, the Sun, and the Moon.

Mass of Earth $=$	Mass of Sun $=$	Mass of Moon $=$
Radius of Earth $=$	Radius of Sun $=$	Radius of Moon $=$

1) What is the gravitational potential energy (relative to infinite) of a $5.00 \times 10^{3} \mathrm{~kg}$ satellite that is in orbit with a radius of $9.90 \times 10^{6} \mathrm{~m}$ around the Earth?
2) How much work is done against gravity in lifting the satellite in problem \#5 from Earth's surface to its orbital height?

$$
\left(1.11 \times 10^{11} \mathrm{~J}\right)
$$

3) A 1750 kg meteorite is 15000 m above the surface of the moon, heading directly towards the moon at $1.00 \times 10^{3} \mathrm{~m} / \mathrm{s}$. What is its speed on impact?

$$
\left(1.02 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)
$$

4) What is the gravitational potential energy of a 10.0 kg object when it is sitting on Earth's surface?

$$
\left(-6.25 \times 10^{8} \mathrm{~J}\right)
$$

5) What is the escape velocity of a 1300 kg shuttle taking off from the moon?

$$
\left(2.37 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)
$$

6) What is the mass of a planet that has an escape speed of $9.0 \times 10^{3} \mathrm{~m} / \mathrm{s}$ and a radius of $7.2 \times 10^{6} \mathrm{~m}$?

$$
\left(4.37 \times 10^{24} \mathrm{~kg}\right)
$$

7) A 12500 kg satellite is in Earth orbit at an altitude of $3.60 \times 10^{6} \mathrm{~m}$. What is its total energy?

HINT: Total Energy $=E_{p}+E_{k}$
$\left(-2.50 \times 10^{11} \mathrm{~J}\right)$

