Worksheet 5.5 Escape Velocity

Before starting this worksheet, google the mass and radius of the Earth, the Sun, and the Moon.

Mass of Earth =	Mass of Sun =	Mass of Moon =
Radius of Earth =	Radius of Sun =	Radius of Moon =

1) What is the gravitational potential energy (relative to infinite) of a 5.00×10^3 kg satellite that is in orbit with a radius of 9.90×10^6 m around the Earth? (-2.0x10¹¹ J)

2) How much work is done against gravity in lifting the satellite in problem #5 from Earth's surface to its orbital height? (1.11x10¹¹ J)

3) A 1750 kg meteorite is 15000 m above the surface of the moon, heading directly towards the moon at 1.00x10³ m/s. What is its speed on impact?

 $(1.02 \times 10^3 \text{ m/s})$

4) What is the gravitational potential energy of a 10.0 kg object when it is sitting on Earth's surface? (-6.25x10⁸ J)

5) What is the escape velocity of a 1300 kg shuttle taking off from the moon? $(2.37 x 10^3 \mbox{ m/s})$

6) What is the mass of a planet that has an escape speed of $9.0x10^3$ m/s and a radius of $7.2x10^6$ m? (4.37x10²⁴ kg)

7) A 12500 kg satellite is in Earth orbit at an altitude of 3.60x10⁶ m. What is its total energy?

HINT: Total Energy = $E_p + E_k$ (-2.50x10¹¹ J)

Phys 12