Worksheet 4.4 Conservation of Momentum in 2D

1. A $1.4 \times 10^{3} \mathrm{~kg}$ car is westbound at a velocity of $37.0 \mathrm{~km} / \mathrm{h}$ when it collides with a $2.0 \times 10^{3} \mathrm{~kg}$ truck northbound at a velocity of $35 \mathrm{~km} / \mathrm{h}$. If these two vehicles lock together upon collision, what is the initial velocity of the vehicles after collision?
($7.2 \mathrm{~m} / \mathrm{s} 37^{\circ} \mathrm{W}$ of N)
2. A 6.2 kg object heading north at $3.0 \mathrm{~m} / \mathrm{s}$ collides with an 8.0 kg object heading west at $3.5 \mathrm{~m} / \mathrm{s}$. If these two masses stick together upon collision, what is their velocity after collision?
($2.4 \mathrm{~m} / \mathrm{s} 56^{\circ} \mathrm{W}$ of N)
3. A $4.0 \times 10^{4} \mathrm{~N}$ Truck moving west at a velocity of $8.0 \mathrm{~m} / \mathrm{s}$ collides with a $3.0 \times 10^{4} \mathrm{~N}$ truck heading south at a velocity of $5.0 \mathrm{~m} / \mathrm{s}$. If these two vehicles lock together upon impact, what is their velocity?($5.0 \mathrm{~m} / \mathrm{s} 25^{\circ} \mathrm{S}$ of W)
4. A 50.0 kg object is moving east at an unknown velocity when it collides with a 60.0 kg stationary object. After collision, the 50.0 kg object is traveling at a velocity of $6.0 \mathrm{~m} / \mathrm{s} 50.0^{\circ} \mathrm{N}$ of E and the 60.0 kg object is traveling at a velocity of $6.3 \mathrm{~m} / \mathrm{s} 38^{\circ} \mathrm{S}$ of E .
a. What was the velocity of the 50.0 kg object before collision?
($9.86 \mathrm{~m} / \mathrm{s}$ due east)
b. Determine whether this collision was elastic or inelastic.
(Ek loss of 340 J , so inelastic)
5. A 15.0 kg penguin waddling east at a velocity of $7.0 \mathrm{~m} / \mathrm{s}$ collides with a stationary 10.0 kg penguin. After the collision the 15.0 kg penguin is traveling at a velocity of $4.2 \mathrm{~m} / \mathrm{s} 20.0^{\circ} \mathrm{S}$ of E .
a. What is the velocity of the 10.0 kg penguin after collision?
($5.1 \mathrm{~m} / \mathrm{s} 25^{\circ} \mathrm{N}$ of E)
b. is this collision elastic or inelastic?
(Inelastic, E_{k} loss of 110J)
6. A watermelon explodes into three equal masses. One mass moves east at $15.0 \mathrm{~m} / \mathrm{s}$. If a second mass moves at a velocity of $10.0 \mathrm{~m} / \mathrm{s} 45.0^{\circ} \mathrm{S}$ of E , what is the velocity of the third mass? (Hint: the total momentum is zero, so how will your vector arrows add up?)

Bonus

A 15.0 kg plate head explodes into three pieces A 6.0 kg chunk flies off at $12.0 \mathrm{~m} / \mathrm{s} 15^{\circ} \mathrm{N}$ of W and a 5.0 kg chunk sails at $8.0 \mathrm{~m} / \mathrm{s} 35^{\circ} \mathrm{E}$ of S . What is the velocity of the final piece?

