Worksheet 4.3 Momentum, Impulse, Conservation of Momentum

Impulse

1. A rocket at rest with a mass of $9.5 \times 10^{3} \mathrm{~kg}$ is acted on by an average net force of $1.5 \times 10^{5} \mathrm{~N}$ upwards for 15 s . What is the final velocity of the rocket?
2. A 26.3 kg object is traveling at $21.0 \mathrm{~m} / \mathrm{s}$ north. What average net force is required to bring this object to a stop in 2.60 s ?
3. An average force of 31.6 N south is used to accelerate a 15.0 kg object uniformly from rest to $10.0 \mathrm{~m} / \mathrm{s}$. What is the change in momentum?
4. An average net force of 25.0 N acts north on an object for $7.20 \times 10^{-1} \mathrm{~s}$. What is the change in momentum of the object?
5. A 5.00 kg object accelerates uniformly from rest to a velocity of $15.0 \mathrm{~m} / \mathrm{s}$ east. What is the change in momentum on the object?
6. An average net force caused an 11.0 kg object to accelerate uniformly from rest. If this object travels 26.3 m west in 3.20 s , what is the change in momentum of the object?
7. A 1.30 kg object is dropped from a height of 6.5 m . How far did the object fall when its momentum is $6.0 \mathrm{kgm} / \mathrm{s}$?
8. An average net force of 16.0 N acts on an object for $2.00 \times 10^{-1} \mathrm{~s}$ causing it to accelerate from rest to $3.50 \mathrm{~m} / \mathrm{s}$. What is the mass of the object?
9. A 0.500 kg object is thrown vertically upward with an average applied force of 8.20 N by a student. The force is applied through a displacement of 1.50 m .
a. What is the average net force acting on the object?
b. What is the velocity of the object when it leaves the student's hand? (Assume initial velocity is zero)
1) $237 \mathrm{~m} / \mathrm{s}$ 2) 212 N south 3) 150 Ns south 4) 18 Ns north 5) 75 Ns 6) 181 Ns west 7) $1.1 \mathrm{~m} \mathrm{8)} 0.91 \mathrm{~kg} 9) \mathrm{a} .3 .30 \mathrm{~N} \mathrm{b} 4.4 \mathrm{~m} /$.
1. A 1.0 kg ball hits the floor with a velocity of $2.0 \mathrm{~m} / \mathrm{s}$. If the ball bounces up with a velocity of $1.6 \mathrm{~m} / \mathrm{s}$, what is the ball's change in momentum?
2. A 0.144 kg baseball is pitched horizontally at $+38 \mathrm{~m} / \mathrm{s}$. The batter hits a horizontal line drive at $-38 \mathrm{~m} / \mathrm{s}$ (the opposite direction!). What is the ball's change in momentum?
3. The 800 kg physics dragster is traveling at $35 \mathrm{~km} / \mathrm{h}$ east when it hits the gas and accelerates at $12.5 \mathrm{~m} / \mathrm{s}^{2}$ for 3.25 s . What is its change in momentum during this time?
($32500 \mathrm{kgm} / \mathrm{s}$)
4. A 30.0 kg object moving to the right at a velocity of $1.00 \mathrm{~m} / \mathrm{s}$ collides with a 20.0 kg object moving to the left with a velocity of $5.00 \mathrm{~m} / \mathrm{s}$. If the 20.0 kg object continues to move to the left at a velocity of $1.25 \mathrm{~m} / \mathrm{s}$, what is the velocity of the 30.0 kg object?
($1.50 \mathrm{~m} / \mathrm{s}$ left)
5. A $4.50 \times 10^{3} \mathrm{~kg}$ railway car is moving east at a velocity of $5.0 \mathrm{~m} / \mathrm{s}$ on a level frictionless track when it collides with a stationary $6.50 \times 10^{3} \mathrm{~kg}$ caboose. If the two cars lock together upon impact, how fast are they moving after collision?

$$
\text { (} 2.0 \mathrm{~m} / \mathrm{s} \text { east) }
$$

6. A 925 kg car moving at a velocity of $18.0 \mathrm{~m} / \mathrm{s}$ right collides with a stationary truck of unknown mass. The two vehicles lock together and move off at a velocity of $6.50 \mathrm{~m} / \mathrm{s}$. What is the mass of the truck? (1640 kg)
7. A 50.0 g bullet strikes a 7.00 kg wooden block. If the bullet becomes imbedded in the block and they both move off at a velocity of $5.00 \mathrm{~m} / \mathrm{s}$, what was the initial velocity of the bullet?
($705 \mathrm{~m} / \mathrm{s}$)
8. A 40.0 g hot dog moving with a velocity of $9.00 \mathrm{~m} / \mathrm{s}$ to the right collides with a 55.0 g hot dog bun with a velocity of $6.00 \mathrm{~m} / \mathrm{s}$ to the left. If the two objects stick together upon collision, what is the velocity of the combined masses?

$$
\text { (} 0.316 \mathrm{~m} / \mathrm{s} \text { right) }
$$

9. A 76 kg student, standing at rest on a frictionless surface throws a 0.20 kg cream pie horizontally at $22 \mathrm{~m} / \mathrm{s}$ at her friend who is standing to the student's left. What was the velocity of the student after she threw the pie?
($0.058 \mathrm{~m} / \mathrm{s}$ right)
10. A 25 kg turkey is fired from a $1.1 \times 10^{3} \mathrm{~kg}$ turkey launcher. If the horizontal velocity of the turkey is $325 \mathrm{~m} / \mathrm{s}$ east, what is the recoil velocity of the launcher?
($7.4 \mathrm{~m} / \mathrm{s}$ west)
11. A vehicle with a rocket engine is being tested on a smooth track. Starting from rest the engine is fired for a short period of time, releasing $4.5 \times 10^{2} \mathrm{~kg}$ of gases. It is estimated that the average velocity of the gases is $1.4 \times 10^{3} \mathrm{~m} / \mathrm{s}$ to the right, and that the maximum velocity of the vehicle is $45 \mathrm{~m} / \mathrm{s}$ left. What is the mass of the vehicle?
($1.4 \times 10^{4} \mathrm{~kg}$)
