## Worksheet 3.1

## Forces in 2D and 1D Review

1) A 75 kg criminal wants to escape from the $5^{\text {th }}$ storey window of the jail, 24 m above the ground. He has a rope but it can only support a tension force of 650 N .
a. What is the maximum acceleration he can have as he lowers himself?
$\left(1.1 \mathrm{~m} / \mathrm{s}^{2}\right)$
b. How fast is he traveling when he hits the ground below?
( $7.3 \mathrm{~m} / \mathrm{s}$ )
2) A working boy pushes a 15 kg lawnmower at constant speed with a force of 90.0 N directed along the handle which is at an angle of $30^{\circ}$ below the horizontal.
a) Calculate the friction force the boy is overcoming.
b) Calculate the normal reaction force on the mower from the ground. $\left(1.9 \times 10^{2} \mathrm{~N}\right)$

BONUS) Calculate the coefficient of friction between the mower wheels and the ground. ( 0.41 )
BONUS 2) Calculate how hard the boy would have to push on the handle to give the mower an acceleration of $0.80 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\left(1.1 \times 10^{2} \mathrm{~N}\right)
$$

3) Two blocks ( $m_{1}=6.8 \mathrm{~kg}, m_{2}=5.2 \mathrm{~kg}$ ) are in contact with each other while sitting on a frictionless surface as shown in the diagram. A horizontal force of 85 N is applied to $\mathrm{m}_{1}$.
a. What is the acceleration of the system?

b. What is the force that $m_{1}$ exerts on $m_{2}$ ?
( $7.1 \mathrm{~m} / \mathrm{s}^{2}$ )
(37 N)
4) A 42 N block is pulled along a horizontal surface by a force of 28 N as shown. What is the normal force on the block? If the coefficient of friction is 0.256 , what is the acceleration of the block?
(30. N)
$\left(4.1 \mathrm{~m} / \mathrm{s}^{2}\right)$

5) A 1.0 kg box on a frictionless surface is attached to a 1.5 kg box as shown. What is the acceleration of the 1.0 kg box? ( $5.9 \mathrm{~m} / \mathrm{s}^{2}$ )
6) Consider the following five force vectors. Sketch the following and draw the resultant (R). Do not draw a scaled vector diagram; merely make a sketch. Label each vector. Clearly label the resultant ( R ).

7) A 2.4 kg soccer ball is kicked by two players simultaneously as shown.
a. Find the force on the ball.
( $89 \mathrm{~N} 28^{\circ} \mathrm{E}$ of N )
b. Find the ball's acceleration.
( $37 \mathrm{~m} / \mathrm{s}^{2} 28^{\circ} \mathrm{E}$ of N )

8) Two children pull a third child on a toboggan (shown from the top, assume up is north). If they pull on ropes that are parallel to the ground determine the magnitude of the force exerted on the toboggan.
[ $174 \mathrm{~N}, 6.3^{\circ} \mathrm{S}$ of E ]

