### 2.2 Worksheet Vector Addition and Subtraction

You might need to solve some of these on separate sheet of paper

1. Draw these three vectors
$\mathrm{A}=5.5 \mathrm{~cm}\left[20.0^{\circ}\right] \mathrm{N}$ of E
$B=1.8 \mathrm{~cm}\left[60.0^{\circ}\right] \mathrm{W}$ of S
$\mathrm{C}=2.5 \mathrm{~cm}\left[36^{\circ}\right] \mathrm{N}$ of W
2. Using trigonometry, find the $x$ and $y$ components of the three vectors (above)
$\mathrm{A}_{\mathrm{x}}=$
$\mathrm{B}_{\mathrm{x}}=$
$C_{x}=$
$\mathrm{A}_{\mathrm{y}}=$
$B_{y}=$
$C_{y}=$
3. Find the resulting $x$ component

$$
R_{x}=A_{x}+B_{x}+C_{x}
$$

4. Find the resulting y component

$$
R_{y}=A_{y}+B_{y}+C_{y}
$$

5. Add $R_{x}$ and $R_{y}$ vectorally and draw the resultant.
6. Use trig and Pythagoras to find the magnitude and direction of R.

Draw and add the vectors
7. $8 \mathrm{~m} \mathrm{~N} \& 5 \mathrm{~m} 30^{\circ} \mathrm{N}$ of E
8. $200 \mathrm{~m} / \mathrm{s} 20^{\circ} \mathrm{W}$ of $\mathrm{S} \& 15 \mathrm{~m} / \mathrm{s} 20^{\circ} \mathrm{W}$ of N

## The Change " $\Delta$ " Of A Quantity a.k.a. Vector Subtraction

This deals with the change of a quantity, which can be solved by vector subtraction. We will deal only with $\Delta v=v_{f}-v_{i}$ in these questions but the concept will appear several more times in this course. Remember that each term is a vector (therefore, do not expect to simply subtract the values!!)

Solve all problems on your own paper showing all work!
9. If a car that was originally going $40 . \mathrm{m} / \mathrm{s}$ towards the east took 5.0 s to turn and go $30 . \mathrm{m} / \mathrm{s}$ towards the south, what is the acceleration of the car?
10. What is the acceleration of a car that changes from $60 . \mathrm{m} / \mathrm{s}$ to the north to $60 . \mathrm{m} / \mathrm{s}$ to an angle of $45^{\circ}$ East of North in a time of 3.0 s ?
11. What is the acceleration of a bullet that was shot at $40 . \mathrm{m} / \mathrm{s}$ in the horizontal and then changed to a velocity of $44.5 \mathrm{~m} / \mathrm{s}$ at $26.1^{\circ}$ below the horizontal in a time of 2.0 seconds?
12. What is the acceleration of a ball that bounces off a wall in 0.30 s if its incoming velocity is $60 . \mathrm{m} / \mathrm{s}$ and its recoil velocity is $50 . \mathrm{m} / \mathrm{s}$ ?
13. A car is traveling at $100 \mathrm{~km} / \mathrm{h}$, due northwest. The driver puts on the brakes and turns the corner. Four seconds later, he is heading east at $50 \mathrm{~km} / \mathrm{h}$. What is the average acceleration?

KEY Vector Addition by Components

1) $A$

B


2) $\mathrm{Ax}=5.17 \mathrm{~cm} ; A y=1.88 \mathrm{~cm} ; B x=-1.69 \mathrm{~cm} ; B y=0.62 \mathrm{~cm} ; C x=1.05 \mathrm{~cm} ;-2$
3) 4.53 cm
4) 0.5 cm
5) 


6) $\mathrm{R}=4.6 \mathrm{~cm} \theta=6.0^{\circ}$

Draw and Add Vectors
7) $11.3 \mathrm{~m} 22^{\circ} \mathrm{E}$ of N
8) $188 \mathrm{~m} / \mathrm{s} 23^{\circ} \mathrm{W}$ of S

## Change in Quantity

9) $10 \mathrm{~m} / \mathrm{s}^{2} 53^{\circ} \mathrm{E}$ of S
10) $15 \mathrm{~m} / \mathrm{s}^{2} 68^{\circ} \mathrm{E}$ of $S$
11) $9.8 \mathrm{~m} / \mathrm{s}^{2}$ down
12) $367 \mathrm{~m} / \mathrm{s}^{2}$ back
13) $9.7 \mathrm{~m} / \mathrm{s}^{2} 30^{\circ} \mathrm{S}$ of E
