Magnetism Exercises

Solenoids

1. A 25.0 cm solenoid has 1800 loops and a diameter of 3.00 cm . Calculate the magnetic field in the air core of the solenoid when a current of 1.25 A is flowing through it.
2. An air core solenoid is 25 cm long and carries a current of 0.72 A . If the magnetic field in the core is $2.1 \times$ $10^{-3} \mathrm{~T}$, how many turns does this solenoid have?
3. An air core solenoid is 30.0 cm long and has 775 turns. If the magnetic field in the core is 0.100 T , what is the current flowing through this solenoid?
4. What is the magnetic field near the centre of a 0.30 m long solenoid that has 800 turns of wire and carries an electric current of 2.0A?

Magnetic Forces

1. A proton travelling vertically at a speed of $2.10 \times 10^{5} \mathrm{~m} / \mathrm{s}$ through a horizontal magnetic field experiences a magnetic force of $9.50 \times 10^{-14} \mathrm{~N}$. What is the magnitude of the magnetic field?
2. A copper wire $(I=0.222 \mathrm{~m})$ carries conventional current of 0.960 A north through a magnetic field $(B=$ $7.50 \times 10^{-4} \mathrm{~T}$) that is directed vertically upward. What is the magnitude and direction of the magnetic force acting on the wire?
3. Calculate the magnitude and the direction of the magnetic force on an electron travelling north at a speed of $3.52 \times 10^{5} \mathrm{~m} / \mathrm{s}$ through a vertically upward magnetic field of $2.80 \times 10^{-1} \mathrm{~T}$.
4. Calculate the magnitude and the direction of the magnetic force on an alpha particle travelling south at a speed of $7.40 \times 10^{4} \mathrm{~m} / \mathrm{s}$ through a vertically upward magnetic field of 5.50T.
5. Calculate the magnitude and the direction of the magnetic field that produced a magnetic force of $1.70 \times 10^{-14} \mathrm{~N}$ east on a proton that is travelling $1.90 \times 10^{4} \mathrm{~m} / \mathrm{s}$ north through the magnetic field.
6. An electron experiences an upward force of $7.1 \times 10^{-14} \mathrm{~N}$ when it is travelling $2.7 \times 10^{5} \mathrm{~m} / \mathrm{s}$ south through a magnetic field. What is the magnitude and direction of the magnetic field?
7. Calculate the magnitude and the direction of the magnetic force on an alpha particle travelling upward at a speed of $2.11 \times 10^{5} \mathrm{~m} / \mathrm{s}$ through a magnetic field that is directed down.
8. A wire in the armature of an electric motor is $2.50 \times 10^{-1} \mathrm{~m}$ long and is perpendicular to a magnetic field of $5.00 \times 10^{-1} \mathrm{~T}$. Calculate the magnitude of the magnetic force on the wire when it carries a current of 3.60A.
9. An electron is accelerated from rest by a potential difference of $1.70 \times 10^{3} \mathrm{~V}$, and then enters a magnetic field of $2.50 \times 10^{-1} \mathrm{~T}$, moving perpendicular to it. What is the magnitude of the magnetic force acting on the electron?
10. An electron is accelerated by a potential difference and then travels perpendicular through a magnetic field of $7.20 \times 10^{-1} 7$ where it experiences a magnetic force of $4.1 \times 10^{-13} \mathrm{~N}$. If it is assumed that this electron starts from rest, through what potential difference is the electron accelerated?
11. Calculate the downward acceleration of an electron that is travelling horizontally at a speed of 6.20×10^{5} m / s perpendicular to a horizontal magnetic field of $2.30 \times 10^{-1} \mathrm{~T}$.

Motion of Charged Particles in Magnetic Fields

1. An alpha particle travels through a magnetic field of $4.22 \times 10^{-1} \mathrm{~T}$ perpendicular to the field. If the radius of the arc of the deflected particles is $1.50 \times 10^{-3} \mathrm{~m}$, what is the speed of the particles?
2. A proton travels through a magnetic field at a speed of $5.40 \times 10^{5} \mathrm{~m} / \mathrm{s}$ perpendicular to the field. If the radius of the arc of the deflected proton is $7.20 \times 10^{-3} \mathrm{~m}$, what is the magnetic field strength?
3. Calculate the charge-to-mass ratio of a particle that is travelling $3.60 \times 10^{5} \mathrm{~m} / \mathrm{s}$ and is deflected in an arc with a radius of $7.40 \times 10^{-2} \mathrm{~m}$ as it travels through a perpendicular magnetic field of $6.10 \times 10^{-1} \mathrm{~T}$.
4. Alpha particles travelundeflected through magnetic and electric fields that are perpendicular to each other. The speed of the alpha particles is $7.80 \times 10^{5} \mathrm{~m} / \mathrm{s}$ and the strength of the magnetic field is $2.20 *$ $10^{-1} \mathrm{~T}$. If it is assumed that the alpha particles are travelling perpendicular to these fields, what is the strength of the electric field?
5. Positive charged particles travel undeflected through magnetic and electric fields that are perpendicular to each other. The magnetic field strength is $6.50 \times 10^{-1} \mathrm{~F}$ and the strength of the electric field is $2.10 \times 10^{5} \mathrm{~N} / \mathrm{C}$. If it is assumed the charged particles are travelling perpendicular to these fields, what is the speed of the charged particles?
6. Alpha particles travel through a magnetic field of $3.60 \times 10^{-1} \mathrm{~T}$ and are deflected in an arc with a radius of $8.20 \times 10^{-2} \mathrm{~m}$. If it assumed that the alpha particles are travelling perpendicular to the field, what is the energy of each alpha particle?
7. In a CRT (cathode ray tube), electrons are accelerated from rest by a potential difference of 2.50×10^{3} \forall. What is the maximum speed of the electrons?
8. In aCRT, an electron reaches a maximum speed of $4.75 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If this electron is accelerated from rest, what is the potential difference across the tube?
9. In a-CRT, electrons are accelerated from rest by a potential difference of $1.40 \times 10^{3} \mathrm{~V}$. These electrons enter a magnetic field with a strength of $2.20 \times 10^{-2} T$. If it is assumed that the electrons are travelling perpendicular to the field, what is the radius of the arc of the deflected electrons?
10. Electrons are accelerated from rest in a CRT. These electrons now pass through a magnetic field of 1.40 $* 10^{-7}$ F and through an electric field of $4.20 \times 10^{5} \mathrm{~N} / \mathrm{C}$. The fields are perpendicular to each other, and the electrons are not deflected. If it is assumed the electrons are travelling perpendicular to these fields, what is the potential difference across the CRT?
11. A negatively charged particle with a mass of $8.4 \times 10^{-27} \mathrm{~kg}$ is travelling at a velocity of $5.6 \times 10^{5} \mathrm{~m} / \mathrm{s}$ perpendicularly through a magnetic field of 0.28 T . If the radius of the path of the particle is 3.5 cm , how many excess electrons does this particle carry?
12. Alpha particles travel at a speed of $3.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$ through a magnetic field. If the magnetic field strength is $4.2 \times 10^{-2} \mathrm{~T}$, what is the radius of the path followed by the alpha particles when the magnetic field is parallel to the direction the alpha particles travel?
13. A proton moves through a 0.75 T magnetic field in a circle with a radius of 0.30 m . What is the rotational speed of this proton?
14. Electrons are accelerated from rest through a potential difference. These electrons are then deflected along an are of radius 0.77 m when they travel through $2.2 .2 \times 10^{-4} \mathrm{~T}$ magnetic field. What is the accelerating voltage?
15. An ion with a charge to mass ratio of $1.10 \times 10^{4} \mathrm{C} / \mathrm{kg}$ travels perpendicular to a magnetic field ($B=0.91 \mathrm{~T}$) in a circular path $(r=0.240 \mathrm{~m})$. How long does it take the ion to complete one revolution?

Solenoids 1. 1.3×10-2 T , 2. 580, 3. 31A, 4. $6.7 \times 10^{-3} \mathrm{~T}$
Magnetic Forces 1. 2.83 T , 2. $1.60 \times 10^{-4} \mathrm{~N}$ East, 3. $1.58 \times 10^{-14} \mathrm{~N}$ West, 4. 1.30×10 ${ }^{-13} \mathrm{~N}$ West, 5. 5.59T up, 6. 1.6T West, 7. O, 8. $0.45,9.9 .77 \times 10^{-13} \mathrm{~N}, 10.36 \mathrm{~V}, 11.2 .50 \times 10^{16} \mathrm{~m} / \mathrm{s}^{2}$

Motion of Charged Particles in Magnetic Fields 1. $3.05 \times 10^{4} \mathrm{~m} / \mathrm{s}, 2.0 .783 \mathrm{~T}, 3.7 .98 \times 10^{6} \mathrm{C} / \mathrm{kg}, 4.1 .72 \times 10^{5} \mathrm{~N} / \mathrm{C}, 5.3 .23 \times 10^{5}$ $\mathrm{m} / \mathrm{s}, 6.6 .71 \times 10^{-15} \mathrm{~J}, 7.2 .96 \times 10^{7} \mathrm{~m} / \mathrm{s}, 8.6 .42 \times 10^{3} \mathrm{~V}, 9.5 .74 \times 10^{-3} \mathrm{~m}, 10.2 .56 \times 10^{3} \mathrm{~V}, 11.3,12$. No deflection, $13.2 .16 \times 10^{7} \mathrm{~m} / \mathrm{s}$, 14. $2.5 \times 10^{3} \mathrm{~V}, 15.6 .28 \times 10^{-4} \mathrm{~s}$

