Name: \qquad

Error Propogation

Now that you've learned about absolute error and relative error, let's take a look at how we use them when propagating our errors.

Let's say we have three numbers $\quad \boldsymbol{a}=7.48 \pm 0.03 \quad \boldsymbol{b}=1.3 \pm 0.2$ and $\boldsymbol{c}=9 \pm 1$

Adding and Subtracting

For adding and subtracting numbers, you \qquad their \qquad errors.

On your data booklet, the general form for this for this operation is:
*Note: the " \pm " symbol above means adding or subtracting, not uncertainty.
Ex 1. $\boldsymbol{a}-\boldsymbol{b}=$?
Ex. $2 \boldsymbol{a}+\boldsymbol{b}=$?

Inquiry question: In which example is the relative error of your answer larger? Why?

Multiplying by an errorless number

When multiplying your number by an errorless number, \boldsymbol{p}, you \qquad your \qquad error by \boldsymbol{p}. Your data booklet does not have the general form for this operation, but we can simply write it as

Recall, that we did an example of this when you were calculating your uncertainties, there was one more step in that calculation to account for your time measuring for 10 oscillations.

Ex. 3 What is the error of πa ?

Inquiry question: If you took the relative error of \boldsymbol{a} and multiplied it by $\pi \boldsymbol{a}$, would that give you the same answer as Ex.3? Show your work to help you explain.

Name:

Multiplying and Dividing

For multiplying and dividing numbers, you \qquad their \qquad errors

On your data booklet, the general form for this for this operation is:

Notice that \qquad represents \qquad error. In order to leave your answer in absolute error, you need to multiply your final answer, \boldsymbol{y}, by your calculated relative error.

Ex. $4 \quad \frac{a b}{\boldsymbol{c}}=$?

Ex. $5 \quad \frac{b}{a c}=$?

Exponents

For taking your number to a certain power \boldsymbol{n}, you \qquad your number's \qquad error by n, then take its \qquad 1 \qquad
On your data booklet, the general form for this for this operation is:

Notice that \qquad represents \qquad error. In order to leave your answer in absolute error, you need to multiply your final answer, \boldsymbol{y}, by your calculated relative error.
Ex. $6 \boldsymbol{b}^{2}=$?
Ex. $7 \quad \sqrt{\boldsymbol{c}}=$?
Ex. $8 \quad \frac{1}{a^{2}}=$?

