2.2 Vector Addition and Subtraction

Review: Last class we broke vectors down into their components. What happens if the reverse happened?
Ex 1: Leo walked 4.0 m North then 7.5 m West. What was Leo's displacement?

Notice that we used \qquad and are working backwards compared to last lesson.

Vector Addition

Recall, to add vectors, you connect them \qquad to \qquad . In 2D, it's the same thing.
You can then draw the \qquad that connects the tail of your first arrow to the head of your second arrow.

Ex 2: Add the following vectors together.

b)

c)

Component Method
To calculate the \qquad we need to

1) Break the vectors down into their horizontal and vertical components (if necessary)
2) Add the horizontal components of each added vector, let's call this new vector $\bar{H}_{\text {total }}$.
3) Add the vertical components of each added vector, let's call this new vector $\bar{V}_{\text {total }}$. Make sure to do 2 and 3 \qquad of each other!!!! \qquad IMPORTANT!
4) Add the vectors $\bar{H}_{\text {total }}$ and $\bar{V}_{\text {total }}$. Calculate the resultant vector using Pythagoras.

Ex 3: Sammy the flying squirrel flew 23.0 m North then 56 m at 60.0° South of West. What was his final displacement?

Trigonometric/Graphical Method

To calculate the \qquad we need to

1) Draw the vectors connecting them tip to tail.
2) Draw the resultant vector.
3) Depending on what you're given, use the cosine or sine law to calculate your resultant vector.

Recall,
Sine Law: $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
Cosine Law: $c^{2}=a^{2}+b^{2}-2 a b \cos C$

Ex 4: Redo Ex 3 using the trig method.

Vector Subtraction

Key Point: Subtracting a number is the same as adding the negative of that number (ex. 3-4 = $3+(-4)$).
The same idea can be applied to vectors. All you need to do is to \qquad your subtracted vector in the
\qquad direction. Then you can \qquad the vectors normally.

Ex 5: Michu was running East at $2.0 \mathrm{~m} / \mathrm{s}$ then changed her directions in 1.0 s going $2.0 \mathrm{~m} / \mathrm{s}$ South. What was her acceleration? Recall that $a=\frac{v_{f}-v_{i}}{\Delta t}$.

