2.1 Describing Vectors: Horizontal and Vertical Components

Review: What's the difference between a vector and a scalar?

Most of grade 11 we've dealt with motion in 1D. In grade 12, we will be analyzing motion in 2D. Before looking at breaking down 2D vectors, let's take a look at how we name them.

The name of your vector begins with the \qquad then \qquad _.

Remember, vectors can point North, South, East, West AND up/down. Think of yourself playing a 3D video game.

When describing up/down vectors, the language looks like:
\qquad at \qquad
\qquad the horizontal. (magnitude)
(angle)
(above/below)

Ex. 1. $44 \mathrm{~m} / \mathrm{s} 45^{\circ}$ above the horizontal

When dealing with North, South, East, and West, the language becomes more complicated...
(magnitude)
at \qquad of \qquad

Ex. 2. $1500 \mathrm{~km} 33^{\circ}$ North of East
Ex. 3. 420N 68° South of West

Name the following vectors:
Ex. 4.

Ex. 5.

Inquiry Question: Is there another way of describing the vectors you used above? How? Why does it work?

With 2D motion, we need to deal with 2 axes, namely the horizontal and the vertical axis. It is difficult to analyze motion in 2D in a linear fashion, so we need to break our 2D motion into 2 components, the horizontal (\mathbf{x}) and the vertical (\mathbf{y}) direction.

Ex. 6. Break each of the following vectors into their horizontal and the vertical components.
a)
b)

How do we calculate each component quantitatively?
We will use \qquad and \qquad to calculate the components.

For example, let's calculate the horizontal and vertical component of the following:

c)

